Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering

نویسندگان

  • Nikola Prtljaga
  • Daniel Navarro-Urrios
  • Andrea Tengattini
  • Aleksei Anopchenko
  • Joan Manel Ramírez
  • José Manuel Rebled
  • Sònia Estradé
  • Jean-Philippe Colonna
  • Jean-Marc Fedeli
  • Blas Garrido
  • Lorenzo Pavesi
چکیده

We have fabricated a series of thin (~50 nm) erbium-doped (by ion implantation) silicon-rich oxide films in the configuration that mitigates previously proposed mechanisms for loss of light emission capability of erbium ions. By combining the methods of optical, structural and electrical analysis, we identify the erbium ion clustering as a driving mechanism to low optical performance of this material. Experimental findings in this work clearly evidence inadequacy of the commonly employed optimization procedure when optical amplification is considered. We reveal that the significantly lower erbium ion concentrations are to be used in order to fully exploit the potential of this approach and achieve net optical gain. ©2012 Optical Society of America OCIS codes: (130.3130) Integrated optics materials; (160.5690) Rare-earth-doped materials; (250.5230) Photoluminescence; (310.6860) Thin films, optical properties. References and links 1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). 2. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–895 (2004). 3. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er ,” Appl. Phys. Lett. 71(9), 1198–1200 (1997). 4. G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003). 5. I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. Moskalenko, A. Prokofiev, I. Yassievich, and M. Fujii, “Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. B 78(3), 035327 (2008). 6. O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010). 7. I. Izeddin, A. S. Moskalenko, I. N. Yassievich, M. Fujii, and T. Gregorkiewicz, “Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. Lett. 97(20), 207401 (2006). 8. C. J. Oton, W. H. Loh, and A. J. Kenyon, “Er excited state absorption and the low fraction of nanoclusterexcitable Er in SiOx,” Appl. Phys. Lett. 89(3), 031116 (2006). 9. B. Garrido, C. García, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, “Distance dependent interaction as the limiting factor for Si nanocluster to Er energy transfer in silica,” Appl. Phys. Lett. 89(16), 163103 (2006). 10. O. Savchyn, F. Ruhge, P. Kik, R. Todi, K. Coffey, H. Nukala, and H. Heinrich, “Luminescence-center-mediated excitation as the dominant Er sensitization mechanism in Er-doped silicon-rich SiO2 films,” Phys. Rev. B 76(19), 195419 (2007). 11. D. Navarro-Urrios, Y. Lebour, O. Jambois, B. Garrido, A. Pitanti, N. Daldosso, L. Pavesi, J. Cardin, K. Hijazi, L. Khomenkova, F. Gourbilleau, and R. Rizk, “Optically active Er ions in SiO2 codoped with Si nanoclusters,” J. Appl. Phys. 106(9), 093107 (2009). #170884 $15.00 USD Received 21 Jun 2012; revised 8 Aug 2012; accepted 8 Aug 2012; published 21 Aug 2012 (C) 2012 OSA 1 September 2012 / Vol. 2, No. 9 / OPTICAL MATERIALS EXPRESS 1278 12. D. Navarro-Urrios, F. Ferrarese Lupi, N. Prtljaga, A. Pitanti, O. Jambois, J. M. Ramírez, Y. Berencén, N. Daldosso, B. Garrido, and L. Pavesi, “Copropagating pump and probe experiments on Si-nc in SiO2 rib waveguides doped with Er: the optical role of non-emitting ions,” Appl. Phys. Lett. 99(23), 231114 (2011). 13. S. Cueff, C. Labbé, O. Jambois, B. Garrido, X. Portier, and R. Rizk, “Thickness-dependent optimization of Er light emission from silicon-rich silicon oxide thin films,” Nanoscale Res. Lett. 6(1), 395 (2011). 14. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slotwaveguide,” Opt. Express 13(25), 10092–10101 (2005). 15. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). 16. B. Garrido, C. García, S.-Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, “Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters,” Phys. Rev. B 76(24), 245308 (2007). 17. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004). 18. F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001). 19. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption,” J. Appl. Phys. 76(8), 4472–4478 (1994). 20. P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006). 21. I. F. Crowe, R. J. Kashtiban, B. Sherliker, U. Bangert, M. P. Halsall, A. P. Knights, and R. M. Gwilliam, “Spatially correlated erbium and Si nanocrystals in coimplanted SiO2 after a single high temperature anneal,” J. Appl. Phys. 107(4), 044316 (2010). 22. X. Wang, P. Li, M. Malac, R. Lockwood, and A. Meldrum, “The spatial distribution of silicon NCs and erbium ion clusters by simultaneous high-resolution energy filtered and Z-contrast STEM and transmission electron tomography,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(3), 1038–1043 (2011). 23. D. A. Stanley, H. Alizadeh, A. Helmy, N. P. Kherani, L. Qian, and S. Zukotynski, “SEM-mapped microphotoluminescence studies of highly luminescent micro-clusters in erbium-doped silicon-rich silicon oxide,” J. Lumin. 131(1), 72–77 (2011). 24. M. Shah, M. Wojdak, A. J. Kenyon, M. P. Halsall, H. Li, and I. F. Crowe, “Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide,” J. Lumin. (to be published). 25. A. Anopchenko, A. Tengattini, A. Marconi, N. Prtljaga, J. M. Ramírez, O. Jambois, Y. Berencén, D. NavarroUrrios, B. Garrido, F. Milesi, J.-P. Colonna, J.-M. Fedeli, and L. Pavesi, “Bipolar pulsed excitation of erbiumdoped nanosilicon light emitting diodes,” J. Appl. Phys. 111(6), 063102 (2012). 26. S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006). 27. M. Wojdak, M. Klik, M. Forcales, O. Gusev, T. Gregorkiewicz, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Sensitization of Er luminescence by Si nanoclusters,” Phys. Rev. B 69(23), 233315 (2004). 28. G. Franzò, M. Miritello, S. Boninelli, R. Lo Savio, M. G. Grimaldi, F. Priolo, F. Iacona, G. Nicotra, C. Spinella, and S. Coffa, “Microstructural evolution of SiOx films and its effect on the luminescence of Si nanoclusters,” J. Appl. Phys. 104(9), 094306 (2008). 29. C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74(20), 205428 (2006). 30. G. Franzò, E. Pecora, F. Priolo, and F. Iacona, “Role of the Si excess on the excitation of Er doped SiOx,” Appl. Phys. Lett. 90(18), 183102 (2007). 31. M. de Dood, L. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, “Local optical density of states in SiO2 spherical microcavities: theory and experiment,” Phys. Rev. A 64(3), 033807 (2001). 32. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54 μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006). 33. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. García, P. Pellegrino, B. Garrido, and L. Cognolato, “Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides,” Appl. Phys. Lett. 86(26), 261103 (2005). 34. P. Horak, W. H. Loh, and A. J. Kenyon, “Modification of the Er radiative lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide,” Opt. Express 17(2), 906–911 (2009). 35. L. Borowska, S. Fritzsche, P. G. Kik, and A. E. Masunov, “Near-field enhancement of infrared intensities for f-f transitions in Er ions close to the surface of silicon nanoparticles,” J. Mol. Model. 17(3), 423–428 (2011). 36. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). 37. E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995). 38. H. Urbach and G. Rikken, “Spontaneous emission from a dielectric slab,” Phys. Rev. A 57(5), 3913–3930 (1998). 39. C. Creatore, L. C. Andreani, M. Miritello, R. Lo Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94(10), 103112 (2009). #170884 $15.00 USD Received 21 Jun 2012; revised 8 Aug 2012; accepted 8 Aug 2012; published 21 Aug 2012 (C) 2012 OSA 1 September 2012 / Vol. 2, No. 9 / OPTICAL MATERIALS EXPRESS 1279

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the origin of emission and thermal quenching of SRSO:Er films grown by ECR-PECVD

Silicon nanocrystals embedded in a silicon-rich silicon oxide matrix doped with Er ions have been fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Indirect excitation of erbium photoluminescence via silicon nanocrystals has been investigated. Temperature quenching of the photoluminescence originating from the silicon nanocrystals and the erbium ions has been...

متن کامل

On the origin of emission and thermal quenching of SRSO:Er3+ films grown by ECR-PECVD

Silicon nanocrystals embedded in a silicon-rich silicon oxide matrix doped with Er3+ ions have been fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Indirect excitation of erbium photoluminescence via silicon nanocrystals has been investigated. Temperature quenching of the photoluminescence originating from the silicon nanocrystals and the erbium ions has be...

متن کامل

Absorption bleaching by stimulated emission in erbium-doped silicon-rich silicon nitride waveguides.

Stimulated emission from sensitized erbium ions in silicon-rich silicon nitride is demonstrated by pump-probe measurements carried out in waveguides. A decrease in the photoinduced absorption of the probe at the wavelength of erbium emission is observed and is attributed to stimulated emission from erbium excited indirectly via localized states in the silicon nitride matrix.

متن کامل

Thickness-dependent optimization of Er3+ light emission from silicon-rich silicon oxide thin films

This study investigates the influence of the film thickness on the silicon-excess-mediated sensitization of Erbium ions in Si-rich silica. The Er3+ photoluminescence at 1.5 μm, normalized to the film thickness, was found five times larger for films 1 μm-thick than that from 50-nm-thick films intended for electrically driven devices. The origin of this difference is shared by changes in the loca...

متن کامل

Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica

: Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012